Skip to main content

Databricks Azure Data Factory UC4 Job delta optimization and diverse strategies for ETL process and Data sourcing work flow process strategies


To load data from S3 files into Delta tables, transform them, and create an audit Delta table version using PySpark, we can follow these steps:

Steps:

1. Set Up Configurations: Connect PySpark with AWS S3.


2. Load Data from S3: Read the files into a DataFrame.


3. Transform Data: Apply minimal transformations based on your requirements.


4. Write Data to Delta Tables: Write the transformed data to a Delta table.


5. Create an Audit Delta Table: Add metadata (e.g., version, timestamps, operations) for auditing purposes.



Prerequisites:

PySpark is configured with Delta Lake.

AWS credentials are accessible (either in the environment or through a credentials file).

Delta Lake libraries are included in the PySpark environment.



---

Example Code:

from pyspark.sql import SparkSession
from pyspark.sql.functions import current_timestamp, lit

# Initialize Spark session with Delta Lake support
spark = SparkSession.builder \
    .appName("S3 to Delta with Audit") \
    .config("spark.jars.packages", "io.delta:delta-core_2.12:2.4.0") \
    .config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \
    .config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") \
    .getOrCreate()

# Step 1: Configure S3 Access
spark._jsc.hadoopConfiguration().set("fs.s3a.access.key", "YOUR_AWS_ACCESS_KEY")
spark._jsc.hadoopConfiguration().set("fs.s3a.secret.key", "YOUR_AWS_SECRET_KEY")
spark._jsc.hadoopConfiguration().set("fs.s3a.endpoint", "s3.amazonaws.com")

# Step 2: Read data from S3
s3_path = "s3a://your-bucket/your-folder/"
input_df = spark.read.format("csv").option("header", "true").load(s3_path)

# Step 3: Apply minimal transformations
# Example: Add an ingestion timestamp
transformed_df = input_df.withColumn("ingestion_time", current_timestamp())

# Step 4: Write transformed data to a Delta table
delta_table_path = "s3a://your-bucket/delta/your-table/"
transformed_df.write.format("delta").mode("overwrite").save(delta_table_path)

# Step 5: Create an Audit Delta Table
# Add versioning and metadata for auditing
audit_df = transformed_df.withColumn("operation", lit("INSERT")) \
                         .withColumn("version", lit(1)) # Increment this for subsequent writes

audit_table_path = "s3a://your-bucket/delta/audit-your-table/"
audit_df.write.format("delta").mode("overwrite").save(audit_table_path)

# Step 6: Register Delta Tables (optional, for querying in SQL)
spark.sql(f"CREATE TABLE IF NOT EXISTS your_table USING DELTA LOCATION '{delta_table_path}'")
spark.sql(f"CREATE TABLE IF NOT EXISTS audit_your_table USING DELTA LOCATION '{audit_table_path}'")

# Verify data
spark.sql("SELECT * FROM your_table").show()
spark.sql("SELECT * FROM audit_your_table").show()


---

Explanation of Key Steps:

1. Reading from S3:

spark.read.format("csv"): Adjust this format to match your file type (e.g., parquet, json).



2. Minimal Transformations:

Add metadata like ingestion_time for tracking data ingestion.



3. Writing to Delta:

Use write.format("delta") to save data as Delta tables.

Specify the mode (overwrite for initial load, append for incremental loads).



4. Audit Table:

Add columns like operation and version for tracking operations and versions.



5. Delta Table Registration:

Register Delta tables in the Spark catalog for SQL-based querying.





---

Key Points:

Delta Lake automatically manages ACID transactions and versioning.

For incremental loads, you can use the MERGE operation in Delta Lake to upsert data.

To explore Delta table versions, use:

DESCRIBE HISTORY your_table;


Optimization 


Optimization Strategies for High-Volume Delta Table Workflows with UC4 Jobs and Workflow Automation

1. Optimization Strategies for High Volume

When the data volume grows, optimizing the ETL pipeline and analytics processes becomes critical. Here’s a systematic approach:


---

1.1 Data Partitioning and Bucketing

Partition Delta tables by high-cardinality columns such as date or region.

transformed_df.write.partitionBy("date").format("delta").mode("overwrite").save(delta_table_path)

Use bucketing for low-cardinality columns to reduce shuffle overhead.



---

1.2 Incremental Loads

Only load data that has changed using Delta Lake's Merge or Append operations.

Example:

delta_table.alias("target").merge(
    incremental_data.alias("source"),
    "target.id = source.id"
).whenMatchedUpdateAll().whenNotMatchedInsertAll().execute()



---

1.3 Data Skipping and Z-Ordering

Use Z-Ordering to colocate frequently queried columns in storage.

delta_table.optimize().executeZOrderBy("query_column")



---

1.4 Optimize Table Compaction

Periodically compact small Delta files into larger files.

delta_table.optimize().executeCompaction()



---

1.5 Use Delta Cache

Enable Delta Cache for frequently accessed tables in Spark.

spark.conf.set("spark.databricks.io.cache.enabled", "true")



---

1.6 Query Optimization

Use filter and select to minimize data scanned during queries.

df = spark.read.format("delta").load(delta_table_path).filter("date = '2024-11-18'").select("id", "value")



---

1.7 Handle Schema Evolution

Enable schema evolution for smooth updates.

df.write.option("mergeSchema", "true").format("delta").mode("append").save(delta_table_path)



---

1.8 Automate Cleanup

Automate deletion of older Delta versions using VACUUM for storage optimization.

spark.sql("VACUUM delta_table RETAIN 7 HOURS")



---

2. Using UC4 Jobs and Workflows for Optimization

UC4 Workflow Design:

Create modular UC4 jobs for the ETL process (e.g., Extract, Transform, Load, Audit).

Define workflows to manage dependencies and execution order:

Trigger Frequency: Hourly/Daily, depending on data arrival patterns.

Failure Handling: Retry or alert mechanisms.


Dynamic Parameters: Pass runtime parameters like date or region.


Example Workflow Steps:

1. Step 1: Load new data from S3 to the Delta staging table.


2. Step 2: Apply transformations and load into the final Delta table.


3. Step 3: Update the Audit table with metadata.


4. Step 4: Trigger data analytics jobs.




---

3. Per Hourly/Per Day Table Partitioning and Frequency

Partition Strategy:

Partition Delta tables by hour or day for granular updates.

transformed_df.write.partitionBy("date", "hour").format("delta").mode("overwrite").save(delta_table_path)


Hourly Workflow in UC4:

1. Step 1: Schedule data ingestion hourly.


2. Step 2: Run incremental loads.


3. Step 3: Trigger analytics jobs for the past hour.



Daily Workflow in UC4:

1. Step 1: Consolidate hourly partitions into daily partitions.


2. Step 2: Trigger daily analytics and reporting.




---

4. Minimizing Time for Data Analytics

Quick Time Execution Strategies:

Pre-Aggregation: Compute daily/hourly aggregates during ETL.

hourly_agg_df = input_df.groupBy("hour").agg({"value": "sum"})
hourly_agg_df.write.format("delta").mode("overwrite").save(agg_table_path)

Materialized Views: Use Delta views for pre-computed analytics.

CREATE TABLE daily_aggregates USING DELTA AS
SELECT date, SUM(value) AS total_value FROM delta_table GROUP BY date;

Query Optimization: Use indexing and caching.

Parallelism: Leverage Spark's parallelism for distributed computations.



---

5. Monitoring and Audit Delta Table

Audit Table Design:

Add metadata like operation, timestamp, and user.

audit_df = transformed_df.withColumn("operation", lit("INSERT")) \
                         .withColumn("timestamp", current_timestamp()) \
                         .withColumn("user", lit("ETL_Job"))
audit_df.write.format("delta").mode("append").save(audit_table_path)


UC4 Job Monitoring:

Use UC4's built-in monitoring and alerting features for job success/failure.



---

This design ensures scalability, automation, and quick execution of high-volume workflows. 


Comments

Popular posts from this blog

"How to maintain or retain tabs in same tab after button click events or postback?" using JQuery in ASP.NET C#

In this post I'll share an details about " How to maintain or retain tabs in same tab after button click events or postback? " Step 1: you need to download Jquery and JQueryUI Javascript libraries from this site http://jqueryui.com/ Step 2: As usually you can create ASP.NET website from Visual Studio IDE and add Jquery and JqueryUI plugins in the header section of aspx page. Step 3: Add HiddenField control inside aspx page which is very useful to retain tab in same page Step 4: Use the HiddenField ID in Jquery code to indicate that CurrentTab Index Step 5: In code Behind, using Enumerations concept give the tab index values as user defined variable  Step 6: Use the Enum values in every Button click events on different tabs to check that tab could be retained in the same tab Further, Here I'll give the code details and snap shot pictures, 1. Default.aspx: Design Page First Second Third ...

Guidewire Related Interview Question and answers part 1

common Guidewire questions and answers 20 Guidewire BC Q&A Top 100 Guidewire Interview FAQ Guidewire Claimcenter 20 Interview Questions Guidewire Rating concepts

Login and Registration forms in C# windows application with Back end Microsoft SQL Server for data access

In this article, I'm gonna share about how to make login and register form with MS SQL database; 1. Flow Chart Logic 2. Normal Features 3. Form Designs Login Form Design Sign in Form Design Password Retrieve Form 4. Database Design and SQL queries and Stored Procedure Create new Database as "schooldata" create table registerdata (  ID int identity,  Username nvarchar(100),  Password nvarchar(100),  Fullname  nvarchar(100),  MobileNO nvarchar(100),  EmailID nvarchar(100)  ) select * from registerdata create procedure regis (  @Username as nvarchar(100),  @Password as nvarchar(100),  @Fullname as nvarchar(100),  @MobileNO as nvarchar(100),  @EmailID as nvarchar(100)  ) as begin insert into registerdata (Username, Password, Fullname, MobileNO,EmailID) values (@Username, @Password, @Fullname, @MobileNO, @EmailID) ...