Skip to main content

Langchain AI agent with Gemini AI Api

Integrating Gemini AI API with LangChain AI agents allows you to create a more dynamic and intelligent data science pipeline. Below is an example of how to accomplish this:

---

Steps to Integrate Gemini AI with LangChain

1. Set Up Gemini API: Use the Gemini AI API for specific tasks like preprocessing, training, and evaluating.


2. Define Tools: Use LangChain's Tool class to wrap Gemini API functions.


3. Create a LangChain Agent: The agent orchestrates the tools and interacts with the Gemini API.




---

Python Code

Prerequisites

Install the required libraries:

pip install langchain openai requests pandas

Code

import requests
import pandas as pd
from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI

# Set your Gemini API key and endpoint
API_KEY = "your_gemini_api_key"
BASE_URL = "https://api.gemini.ai/v1" # Replace with actual Gemini API base URL

# Define helper functions for the Gemini AI API
def preprocess_data_gemini(data):
    """Preprocess data using Gemini API."""
    url = f"{BASE_URL}/preprocess"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    payload = {"data": data.to_json(orient="split")}

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        processed_data = pd.DataFrame(response.json()["data"])
        return f"Data preprocessing completed. Processed data: {processed_data.head()}"
    else:
        return f"Error in preprocessing: {response.json()}"

def train_model_gemini(data):
    """Train model using Gemini API."""
    url = f"{BASE_URL}/train"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    payload = {"data": data.to_json(orient="split")}

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        model_id = response.json()["model_id"]
        return f"Model training started. Model ID: {model_id}"
    else:
        return f"Error in model training: {response.json()}"

def evaluate_model_gemini(model_id, test_data):
    """Evaluate model using Gemini API."""
    url = f"{BASE_URL}/evaluate"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    payload = {
        "model_id": model_id,
        "test_data": test_data.to_json(orient="split"),
    }

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        metrics = response.json()["metrics"]
        return f"Model evaluation completed. Metrics: {metrics}"
    else:
        return f"Error in model evaluation: {response.json()}"

# Define LangChain tools
tools = [
    Tool(
        name="PreprocessData",
        func=lambda data: preprocess_data_gemini(pd.read_csv(data)),
        description="Preprocess data using the Gemini AI API. Provide the path to a CSV file.",
    ),
    Tool(
        name="TrainModel",
        func=lambda data: train_model_gemini(pd.read_csv(data)),
        description="Train a model using the Gemini AI API. Provide the path to the training CSV file.",
    ),
    Tool(
        name="EvaluateModel",
        func=lambda args: evaluate_model_gemini(args['model_id'], pd.read_csv(args['test_file'])),
        description="Evaluate a model using the Gemini AI API. Provide the model ID and the path to the test data CSV file.",
    ),
]

# Initialize the LangChain agent
llm = OpenAI(temperature=0)
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)

# Run the agent
if __name__ == "__main__":
    # Example usage
    file_path = "data.csv" # Replace with the path to your dataset
    test_file_path = "test_data.csv" # Replace with the path to your test dataset

    # Preprocess data
    preprocess_result = agent.run(f"Preprocess the data from the file {file_path}.")
    print(preprocess_result)

    # Train model
    train_result = agent.run(f"Train a model using the data from the file {file_path}.")
    print(train_result)

    # Evaluate model
    model_id = "your_model_id" # Replace with actual model ID
    evaluate_result = agent.run(f"Evaluate the model with ID {model_id} using the test data from the file {test_file_path}.")
    print(evaluate_result)


---

Explanation

1. Gemini API Functions:

preprocess_data_gemini: Preprocess data via Gemini API.

train_model_gemini: Train a model using the Gemini API.

evaluate_model_gemini: Evaluate the trained model.



2. LangChain Tools:

Each tool wraps a Gemini API function and provides an interface for the LangChain agent.



3. LangChain Agent:

The agent orchestrates the pipeline and takes user instructions dynamically.

Example commands like "Preprocess the data from the file" are interpreted and executed by the agent.





---

Use Case

1. Interactive Workflow:

The agent allows dynamic interaction with the pipeline (e.g., re-run a specific step).



2. Extensibility:

Add more tools (e.g., hyperparameter tuning) or handle specific Gemini AI endpoints.







Comments

Popular posts from this blog

Java Swing MySql JDBC: insert data into database

Program import javax.swing.*; import java.awt.*; import java.awt.event.*; import java.sql.*; public class insertswing implements ActionListener {   JFrame fr;JPanel po;   JLabel l1,l2,main;   JTextField tf1,tf2;   GridBagConstraints gbc;   GridBagLayout go;   JButton ok,exit; public insertswing(){ fr=new JFrame("New User Data "); Font f=new Font("Verdana",Font.BOLD,24); po=new JPanel(); fr.getContentPane().add(po); fr.setVisible(true); fr.setSize(1024,768); fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); po.setBackground(Color.WHITE); go=new GridBagLayout(); gbc=new GridBagConstraints(); po.setLayout(go); main=new JLabel("Enter User Details "); main.setFont(f); l1=new JLabel("Name  :");tf1=new JTextField(20); l2=new JLabel("User Name  :");tf2=new JTextField(20); ok=new JButton("Accept"); exit=new JButton("Exit"); gbc.anchor=GridBagConstraints.NORTH;gbc.gridx=5;gbc.gridy=0; go.s...

Guidewire Policy - Spin Up Spin Off Transactions

Guidewire PolicyCenter - Spin Up and Spin Off Policy Job Transactions In Guidewire PolicyCenter, "spin up" and "spin off" refer to specific actions you can take with policy job transactions. These terms are related to how new policy transactions (such as renewals, endorsements, or cancellations) are created or modified. Here's an explanation of each: 1. Spin Up: "Spin up" refers to the process of creating a new policy job from an existing policy or transaction. When you "spin up" a policy job, you're essentially initiating a new transaction based on an existing policy. This new transaction could be a renewal, an endorsement, or any other type of policy change. For example: - Renewal : When a policy's term is about to expire, you might "spin up" a renewal job to create a new policy term based on the existing one. The new job will carry forward much of the existing policy's data but may allow for updates or cha...

JSP and Servlet Form Submission without page refresh show results on the same page using Jquery AJAX

Code Snippet HTML Form  <form id='ajaxform' name='ajaxform' action='ajaxformexample' method='post'>  First Name: <input type='text' id='firstname' name='firstname' size='30' required/><br/>  Last Name: <input type='text' id='lastname' name='lastname' size='30'required/><br/>  Email:  <input type='email' id='emailid' name='emailid' size='30'required/><br/>  Password:  <input type='password' id='pwd' name='pwd' size='30'required/><br/>  <input type='Submit'/>   <div id='content'> </div> </form> the above HTML Form uses post method and url servlet redirect to " ajaxformexample " Javascript Code  var form = $('#ajaxform'); // id of form tag  form.submit(function () {  $.ajax({  ...