Skip to main content

Langchain AI agent with Gemini AI Api

Integrating Gemini AI API with LangChain AI agents allows you to create a more dynamic and intelligent data science pipeline. Below is an example of how to accomplish this:

---

Steps to Integrate Gemini AI with LangChain

1. Set Up Gemini API: Use the Gemini AI API for specific tasks like preprocessing, training, and evaluating.


2. Define Tools: Use LangChain's Tool class to wrap Gemini API functions.


3. Create a LangChain Agent: The agent orchestrates the tools and interacts with the Gemini API.




---

Python Code

Prerequisites

Install the required libraries:

pip install langchain openai requests pandas

Code

import requests
import pandas as pd
from langchain.agents import initialize_agent, Tool
from langchain.llms import OpenAI

# Set your Gemini API key and endpoint
API_KEY = "your_gemini_api_key"
BASE_URL = "https://api.gemini.ai/v1" # Replace with actual Gemini API base URL

# Define helper functions for the Gemini AI API
def preprocess_data_gemini(data):
    """Preprocess data using Gemini API."""
    url = f"{BASE_URL}/preprocess"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    payload = {"data": data.to_json(orient="split")}

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        processed_data = pd.DataFrame(response.json()["data"])
        return f"Data preprocessing completed. Processed data: {processed_data.head()}"
    else:
        return f"Error in preprocessing: {response.json()}"

def train_model_gemini(data):
    """Train model using Gemini API."""
    url = f"{BASE_URL}/train"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    payload = {"data": data.to_json(orient="split")}

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        model_id = response.json()["model_id"]
        return f"Model training started. Model ID: {model_id}"
    else:
        return f"Error in model training: {response.json()}"

def evaluate_model_gemini(model_id, test_data):
    """Evaluate model using Gemini API."""
    url = f"{BASE_URL}/evaluate"
    headers = {"Authorization": f"Bearer {API_KEY}"}
    payload = {
        "model_id": model_id,
        "test_data": test_data.to_json(orient="split"),
    }

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        metrics = response.json()["metrics"]
        return f"Model evaluation completed. Metrics: {metrics}"
    else:
        return f"Error in model evaluation: {response.json()}"

# Define LangChain tools
tools = [
    Tool(
        name="PreprocessData",
        func=lambda data: preprocess_data_gemini(pd.read_csv(data)),
        description="Preprocess data using the Gemini AI API. Provide the path to a CSV file.",
    ),
    Tool(
        name="TrainModel",
        func=lambda data: train_model_gemini(pd.read_csv(data)),
        description="Train a model using the Gemini AI API. Provide the path to the training CSV file.",
    ),
    Tool(
        name="EvaluateModel",
        func=lambda args: evaluate_model_gemini(args['model_id'], pd.read_csv(args['test_file'])),
        description="Evaluate a model using the Gemini AI API. Provide the model ID and the path to the test data CSV file.",
    ),
]

# Initialize the LangChain agent
llm = OpenAI(temperature=0)
agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True)

# Run the agent
if __name__ == "__main__":
    # Example usage
    file_path = "data.csv" # Replace with the path to your dataset
    test_file_path = "test_data.csv" # Replace with the path to your test dataset

    # Preprocess data
    preprocess_result = agent.run(f"Preprocess the data from the file {file_path}.")
    print(preprocess_result)

    # Train model
    train_result = agent.run(f"Train a model using the data from the file {file_path}.")
    print(train_result)

    # Evaluate model
    model_id = "your_model_id" # Replace with actual model ID
    evaluate_result = agent.run(f"Evaluate the model with ID {model_id} using the test data from the file {test_file_path}.")
    print(evaluate_result)


---

Explanation

1. Gemini API Functions:

preprocess_data_gemini: Preprocess data via Gemini API.

train_model_gemini: Train a model using the Gemini API.

evaluate_model_gemini: Evaluate the trained model.



2. LangChain Tools:

Each tool wraps a Gemini API function and provides an interface for the LangChain agent.



3. LangChain Agent:

The agent orchestrates the pipeline and takes user instructions dynamically.

Example commands like "Preprocess the data from the file" are interpreted and executed by the agent.





---

Use Case

1. Interactive Workflow:

The agent allows dynamic interaction with the pipeline (e.g., re-run a specific step).



2. Extensibility:

Add more tools (e.g., hyperparameter tuning) or handle specific Gemini AI endpoints.







Comments

Popular posts from this blog

"How to maintain or retain tabs in same tab after button click events or postback?" using JQuery in ASP.NET C#

In this post I'll share an details about " How to maintain or retain tabs in same tab after button click events or postback? " Step 1: you need to download Jquery and JQueryUI Javascript libraries from this site http://jqueryui.com/ Step 2: As usually you can create ASP.NET website from Visual Studio IDE and add Jquery and JqueryUI plugins in the header section of aspx page. Step 3: Add HiddenField control inside aspx page which is very useful to retain tab in same page Step 4: Use the HiddenField ID in Jquery code to indicate that CurrentTab Index Step 5: In code Behind, using Enumerations concept give the tab index values as user defined variable  Step 6: Use the Enum values in every Button click events on different tabs to check that tab could be retained in the same tab Further, Here I'll give the code details and snap shot pictures, 1. Default.aspx: Design Page First Second Third ...

Login and Registration forms in C# windows application with Back end Microsoft SQL Server for data access

In this article, I'm gonna share about how to make login and register form with MS SQL database; 1. Flow Chart Logic 2. Normal Features 3. Form Designs Login Form Design Sign in Form Design Password Retrieve Form 4. Database Design and SQL queries and Stored Procedure Create new Database as "schooldata" create table registerdata (  ID int identity,  Username nvarchar(100),  Password nvarchar(100),  Fullname  nvarchar(100),  MobileNO nvarchar(100),  EmailID nvarchar(100)  ) select * from registerdata create procedure regis (  @Username as nvarchar(100),  @Password as nvarchar(100),  @Fullname as nvarchar(100),  @MobileNO as nvarchar(100),  @EmailID as nvarchar(100)  ) as begin insert into registerdata (Username, Password, Fullname, MobileNO,EmailID) values (@Username, @Password, @Fullname, @MobileNO, @EmailID) ...

Guidewire Related Interview Question and answers part 1

common Guidewire questions and answers 20 Guidewire BC Q&A Top 100 Guidewire Interview FAQ Guidewire Claimcenter 20 Interview Questions Guidewire Rating concepts